Chapter 5 Mock Test - Thermochemistry

The Nature of Energy

- 1. What is the difference between kinetic and potential energy? Give an example of each.
- 2. At what velocity (m/s) must a 96.1 kg jogger travel to have the kinetic energy of 1054 J?
- 3. The kinetic energy of a 0.0306 kg golf ball traveling 64.0 m/s is ______ J.
- 4. Convert 548.7 J to calories. Remember: 1 cal = 4.184 J.
- 5. Convert 67.8 cal to Joules.

The First Law of Thermodynamics

- 6. What is the first law of thermodynamics state?
- 7. The value of ΔE for a system that performs 7,655 J of work on its surroundings and releases 2,500 J of heat is ______ J. Is this reaction endothermic or exothermic?
- 8. The value of ΔE for a system that absorbs 9,500 J of heat and has 7,655 J of work done on it by its surroundings is ______J. Is this reaction endothermic or exothermic?
- 9. What is the difference between endothermic and exothermic? Give a real life example of each.

Enthalpies of Reaction

10. The value of ΔH° for the reaction below is -126 kJ. _____ kJ are released when 54.7 grams of NaOH is formed in the reaction?

 $2 \operatorname{Na_2O_2}(s) + 2 \operatorname{H_2O}(I) \rightarrow 4 \operatorname{NaOH}(s) + \operatorname{O_2}(g)$

11. The value of Δ H° for the reaction below is -482 kJ. How many grams of CO₂ is produced during an enthalpy change of -5784 kJ?

 $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$

Calorimetry $*q = Cs \times m \times \Delta T$

12. The temperature of a 15-g sample of lead metal increases from 22 °C to 37 °C upon the addition of 29.0 J of heat. The specific heat capacity of the lead is ______ J/g-K.

13. When a 5.08 g sample of solid ammonium nitrate dissolves in 50 g of water in a <u>coffee-cup calorimeter</u>, the temperature drops from 23.0°C to 18.9°C. Calculate ΔH (**in kJ/mol NH₄NO₃**) for the solution. Assume that the specific heat of the solution is the same as that of pure water 4.18 J/g°C. Remember $q_{soln} = -q_{rxn}$

14. Approximately 6.45 grams of starch goes through combustion in a <u>bomb calorimeter</u>. If the temperature increased from 23.4°C to 26.6°C and the heat capacity of the calorimeter is 7.54 kJ/ °C, then determine the heat of combustion of starch, C₆H₁₀O₅ in kJ/mol AND kJ/gram. Remember q = -C_{cal} x ΔT

Hess's Law

15.	Δ H for the reaction CS ₂ (I) + 3O ₂ (g) \rightarrow	CO ₂ (g) + 2SO ₂ (g) is	kJ, give the data below.
	$C(s) + O_2(g) \longrightarrow CO_2(g)$	ΔH = -393.5 kJ/mol	
	$S(s) + O_2(g) \longrightarrow SO_2(g)$	ΔH = -296.8 kJ/mol	
	$C(s) + 2S(s) \longrightarrow CS_2(I)$	ΔH = +87.9 kJ/mol	

- 16. Find the Δ H for the reaction H₂SO₄(I) \rightarrow SO₃(g) + H₂O(g), given the following reactions and subsequent Δ H values:
 - $\begin{array}{ll} H_2S(g) \ + \ 2O_2(g) \ \rightarrow \ H_2SO_4(I) & \Delta H = -235.5 \ kJ \\ H_2S(g) \ + \ 2O_2(g) \ \rightarrow \ SO_3(g) \ + \ H_2O(I) & \Delta H = -207 \ kJ \\ H_2O(I) \ \rightarrow \ H_2O(g) & \Delta H = 44 \ kJ \end{array}$

Enthalpies of Formation

17. When will values of ΔH° be zero?

18. Given the data in the table below, $\Delta H^{\circ}rxn$ for the reaction C2H5OH (I) + O2 (a) \rightarrow CH3CO2H (I) + H2O (I) is	kJ.		
		Substance	ΔH_{f}° (kJ/mol)
		C ₂ H ₄ (g)	52.3
		C ₂ H ₅ OH(l)	-277.7
		CH ₃ CO ₂ H(l)	-484.5
		H ₂ O (l)	-285.8