$\qquad$

## The Nature of Energy

1. What is the difference between kinetic and potential energy? Give an example of each.
2. At what velocity ( $\mathrm{m} / \mathrm{s}$ ) must a 96.1 kg jogger travel to have the kinetic energy of 1054 J ?
3. The kinetic energy of a 0.0306 kg golf ball traveling $64.0 \mathrm{~m} / \mathrm{s}$ is $\qquad$ J.
4. Convert 548.7 J to calories. Remember: $1 \mathrm{cal}=4.184 \mathrm{~J}$.
5. Convert 67.8 cal to Joules.

## The First Law of Thermodynamics

6. What is the first law of thermodynamics state?
7. The value of $\Delta E$ for a system that performs $7,655 \mathrm{~J}$ of work on its surroundings and releases $2,500 \mathrm{~J}$ of heat is $\qquad$ J . Is this reaction endothermic or exothermic?
8. The value of $\Delta \mathrm{E}$ for a system that absorbs $9,500 \mathrm{~J}$ of heat and has 7,655 J of work done on it by its surroundings is $\qquad$ J . Is this reaction endothermic or exothermic?
9. What is the difference between endothermic and exothermic? Give a real life example of each.
10. The value of $\Delta H^{\circ}$ for the reaction below is -126 kJ . $\qquad$ kJ are released when 54.7 grams of NaOH is formed in the reaction?

$$
2 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{NaOH}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

11. The value of $\Delta H^{\circ}$ for the reaction below is -482 kJ . How many grams of $\mathrm{CO}_{2}$ is produced during an enthalpy change of -5784 kJ?

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

## Calorimetry *q=Csxmx $\Delta T$

12. The temperature of a $15-\mathrm{g}$ sample of lead metal increases from $22^{\circ} \mathrm{C}$ to $37{ }^{\circ} \mathrm{C}$ upon the addition of 29.0 J of heat. The specific heat capacity of the lead is $\qquad$ $\mathrm{J} / \mathrm{g}-\mathrm{K}$.
13. When a 5.08 g sample of solid ammonium nitrate dissolves in 50 g of water in a coffeecup calorimeter, the temperature drops from $23.0^{\circ} \mathrm{C}$ to $18.9^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ (in $\mathrm{kJ} / \mathrm{mol}$ $\mathbf{N H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{3}}$ ) for the solution. Assume that the specific heat of the solution is the same as that of pure water $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Remember $\mathrm{q}_{\text {soln }}=-q_{\mathrm{rxn}}$
14. Approximately 6.45 grams of starch goes through combustion in a bomb calorimeter. If the temperature increased from $23.4^{\circ} \mathrm{C}$ to $26.6^{\circ} \mathrm{C}$ and the heat capacity of the calorimeter is $7.54 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, then determine the heat of combustion of starch, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$ in $\mathbf{k J} / \mathbf{m o l}$ AND kJ/gram. Remember $\mathrm{q}=-\mathrm{C}_{\text {cal }} \mathrm{X} \Delta \mathrm{T}$
15. $\Delta \mathrm{H}$ for the reaction $\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$ is $\qquad$ kJ , give the data below.

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-296.8 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\mathrm{l}) & \Delta \mathrm{H}=+87.9 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

16. Find the $\Delta \mathrm{H}$ for the reaction $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \\
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

$$
\Delta \mathrm{H}=-235.5 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=-207 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}=44 \mathrm{~kJ}
$$

## Enthalpies of Formation

17. When will values of $\Delta H^{\circ}$ be zero?
18. Given the data in the table below, $\Delta \mathrm{H}^{\circ} \mathrm{rxn}$ for the reaction
$\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}(\mathrm{I})+\mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CH} 3 \mathrm{CO} 2 \mathrm{H}(\mathrm{I})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})$ is $\qquad$ kJ.

| Substance | $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :---: |
| $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ | 52.3 |
| $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ | -277.7 |
| $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})$ | -484.5 |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | -285.8 |

