Further Application of the Ideal-Gas Equation (Stoichiometry)

Advanced Chemistry

Introduction

Ideal Gas Law: PV = nRT, where R = 0.08206 L-atm/mol-K

°C+273.15

In this section, we will connect the ideal gas law to the concept of the stoichiometry

Using Ideal Gas Law & Stoichiometry

- We can use both ideal gas law & stoichiometry to find values for compounds.
- ► If given moles/grams: Start Stoic
 - Use mole ratio to determine moles of the other compound
 - From there, use ideal-gas law & information in problem to determine what you are trying to find
- If not given moles/grams: Start ideal
 - Use information from the problem and ideal-gas law to determine moles of one compound
 - Then determine what you are trying to find and use stoichiometry to get there.

Example

If an air bag has a volume of 36.0 L and is to be filled with nitrogen gas at 1.15 atm and 26.0°C, how many grams of NaN3, must be decomposed?

P=1.1Satm (1.15)(3b) = (X)(.0820b)(299.15) V=36L (1.15)(3b) = (X)(.0820b)(299.15) V=36L (1.15)(3b) = (X)(.0820b)(299.15) $\frac{41.4}{24.548249} X=1.686$ $X=1.686474665mol N_{Z} \times \frac{2}{3} mol N_{Z} \times \frac{65.011}{1000} N_{Z} N_{Z}$

More Practice

How many grams of CaH₂ are needed to generate 145.0 L of H₂ gas if the pressure of H₂ is 825.0 torr at 21.00°C?

 $CaH_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + 2H_2(g)$

Example

Calculate the volume of dry CO₂ produced at body temperature (37.0 °C) and 0.970 atm when 24.5 g of glucose is consumed in the reaction.

More Practice

How many liters of NH₃(g) at 850.0°C and 5.00 atm are required to react with 1.00 mol of O₂(g) in this reaction?

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$