Further Application of the Ideal-Gas Equation (Stoichiometry)

Advanced Chemistry

Introduction
-Ideal Gas Law: PV = ${ }^{n} R T$, where $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$
\rightarrow In this section, we will connect the ideal gas law to the concept of the stoichiometry

Using Ideal Gas Law \& Stoichiometry

- We can use both ideal gas law \& stoichiometry to find values for compounds.
- If given moles/grams: Start Stoic
- Use mole ratio to determine moles of the other compound
- From there, use ideal-gas law $\&$ information in problem to determine what you are trying to find
- If not given moles/grams: Start ideal
- Use information from the problem and ideal-gas law to determine moles of one compound
- Then determine what you are trying to find and use stoichiometry to get there.

Example
If an air bag has a volume of 36.0 L and is to be filled with nitrogen gas at 1.15 atm and $26.0^{\circ} \mathrm{C}$, how many grams of $\mathrm{NaN3}$, must be decomposed?
$\left(\mathrm{N}_{2}\right.$

$$
\begin{aligned}
& P=1.15 \mathrm{~atm} \\
& 2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \\
& V=36 \mathrm{~L} \\
& n=x \\
& (1.15)(36)=(x)(.08206)(299.15) \\
& \frac{41.4=24.548249 x}{24.548249} \\
& x=1.6864 \\
& R=08206
\end{aligned}
$$

More Practice

- How many grams of CaH_{2} are needed to generate $145.0 \mathrm{~L}^{\text {of }} \mathrm{H}_{2}$ gas if the pressure of H_{2} is 825.0 torr at $21.00^{\circ} \mathrm{C}$?

$$
\mathrm{CaH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

Example

- Calculate the volume of dr) CO_{2} produced at body temperature $\left(37.0^{\circ} \mathrm{C}\right.$) and 0.970 atm when 24.5 g of glucose is consumed in the reaction.

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
(.970)(x) & =(.8159619368)(.08206)(310.15) \\
.97 x & =20.76704935
\end{aligned} \\
& \frac{.97 x=20.76704935}{.97} \quad x=21.4
\end{aligned}
$$

More Practice

- How many liters of $\mathrm{NH}_{3}(\mathrm{~g})$ at $850.0^{\circ} \mathrm{C}$ and 5.00 atm are required to react with 1.00 mol of $\mathrm{O}_{2}(\mathrm{~g})$ in this reaction?

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

