1. Work is the product of torco and distance. 2. For a force to do work on an object, some of the force must act in the ______ direction as the object moves. 3. In terms of work, what happens if there is not movement? no work is done 4. True or False: If all of the force acts in the same direction as the motion, all of the force does work. 5. True or False: If part of the applied force acts in the direction of motion, none of the force does work. 6. True or False: If none of the force is applied in the direction of the motion, the force does no work. 7. When does a weightlifter do work? EXPLAIN. when he lifts the barbell off the grand 1) time is applied in direction of Motion @ burbel is Moving 8. When is a weightlifter applying a force but NOT doing work? **EXPLAIN**. When he is holding burbell above head 1) The barbell is not moving 10. What is the SI unit for the following: force, distance, and work. Newtons meter jode (N) 11. | Ower is the rate of doing work. 12. What are two ways you can increase your power? 1) increase amount of work in a given amount of time 2 do a given amont of work in less time 13. Power and work are _______ proportional, while power and time are _______ proportional. 14. What is the SI unit for the following: work, time, and power. Joule(s) second(s) Watt(W) $W = \frac{J}{s}$ 15. What is the other common unit for power? 16. How many watts are equal to one horsepower? $746W = 1h\rho$ 17. A machine is a device that changes a $frac{}{}$ 18. Machines can change a force in 3 ways. List those ways. 1) Size of twee needed (2) direction of a force 19. A small force exerted over a large distance becomes a ______ force exerted over a 20. A machine that decreases the distance through which you exert a force ______ / // // // the amount of force required. | 21. True or False: The force exerted on the machine is the input force. 22. True or False: The force exerted on the machine is the output force. | |--| | 23. Describe how input force, input distance and work input relate to an oar. | | · Input force; force exerted on our handles | | · Input distance; distance our hardles move | | · Work input: wurk done to move the hardle | | 24. Describe how output force, output distance, and work output relate to an oar. | | · Output force: force the end of our exerts on the water | | · Output distance: distance end of our moves through the water | | · Work output: work done to move the water and propel the boat | | 25. All machines use some amount of input work to overcome | | 26. Work done by a machine is alwaysess than the work done on a machine; output work isthan input work. | | 27 True or False: You cannot get more work out of a machine than you put into it. | | 28. The mechanical advantage of a machine is the number of times that the machine increases an | | 29. Which value is always less than the other: ideal mechanical advantage or actual mechanical advantage? | | EXPLAIN! Actual mechanical adventage is always less due to friction | | 30. <u>Actual</u> mechanical advantage (AMA) is determined by measuring the actual forces on a machine. | | 31. What is the equation for AMA? | | AMA = output force | | 32. I deal mechanical advantage (IMA) is the mechanical advantage of a machine in the absence | | of friction. | | 33. What is the equation for IMA? | | IMA = input distance | | 34. True or False: There is no unit for AMA or IMA. 35. The percentage of work input that becomes work output is the | | 36. Why is the efficiency of a machine always less than 100 percent? | | 37. Efficiency is usually expressed as a | | 38. What is the equation for efficiency? | | Efficiency = work output x100% | | 39. What are some ways in which friction can be reduced? | | low friction materials, lubricants, WO-40, grave, | | low friction materials, lubricants, WO-40, grave,
Polling friction, slick surface | | 40. Match each type of simple machine to its correct description: | | |--|---------------------------| | a. A rigid bar that is free to move around a fixed point. | 1. Lever | | b. A simple machine that consists of a rope that fits into a groove in a | 2. Wheel and Axle | | wheel. | | | $\underline{3}$ c. A slanted surface along which a force moves an object to a different | 3. Inclined Plane | | elevation | 4. Wedge | | d. A simple machine that consists of two disks or cylinders, each one with | 5. Screw | | a different radius | 6. Pulley | | e. A slanted surface wrapped around a cylinder | | | f. A V shaped object whose sides are slanted and slope towards each other. | | | 41. What is a fulcrum? | | | Fixed point the bor of a lever rotates around | | | , most form is a six a few former around | | | 42. How are levers classified? * | | | Based on locations of input force, output force, and fulcoun | | | Tourse on rocar , and fair your for a fairney | | | 43. For a first class lever, the is in the middle. Depending on | the position, the ideal | | mechanical advantage can be greater than, equal to, or less than | | | 44. For a second class lever, theoutput five is in the middle. | | | 44. For a second class lever, the <u>ownper rank</u> is in the initiale. | | | a. The input distance is than the output distance is greater than the output distance is free is in the middle. | ice, therefore, the liviA | | is <u>greater than l</u> | | | 45. For a third class lever, the in the middle. | | | a. The input distance is than the output distance | ce, therefore, the IMA | | is less than 1 | | | 46. Give a real life example of a first class, second class, and third class lever. | | | | | | Screwdoner againg wheelbonus broom | | | 47. What are real-life examples of a wheel and axle? | | | | | | · meny go rand · door knob · Steering wheel · screwdriver | | | 48. What are real-life examples of an inclined plane? | | | · shate board ramp · ladder · stairs · hill · ramp | | | steere board rolly . looded . Stairs . Will . Camp | | | 49. Which wedge would have a greater IMA: a thin wedge op a thick wedge of the same | length? | | Thin exedge | ienger: | | 50. What are real-life examples of a wedge? | | | , | | | · door stop · needle · edge of s'assurs · vegetable peeter | | | 51. True or False: Screws with threads father apart have a greater ideal mechanical advantage of the state | antage. | | 52. What are real-life examples of a screw? | a.Bo. | | · | | | · Screw · bottle cop · light bulb | | | | | | 53. A fixed pulley can change the of a force but not the 5 | of a force. | | while a movable pulley is able to change both. | | | | | | 54. A machine is a combination of two or more simple machine | ies that operate | | together. | | | 55. Give a real life example of a compound machine? | | | scissors: edge is a wedge white hadles are alever | | | o de la | |