Advanced Chemistry
Effusion & Diffusion WS

NAME:	PER:	
INWINE.	I LN,	

Instructions: Complete the following problems. SHOW ALL WORK in the empty space below the questions. Remembers the units. Round to the correct number of significant figures if needed.

Concept Questions

1. Circle the property of a gas that would	effuse out of the hole bett	er for each letter.
a) Heavy or light molecules		
b) Smaller or large molecules		
c) Slower or faster molecules		
2. Diffusion of a gas will have a short mear a long mean free path with		pressure, and
Graham	n's Law of Effusion	
3. A sample of oxygen gas (O_2) was found unknown gas. The molar mass of the unknown		
4. Helium effuses through a porous cylinde its molar mass of the unknown gas?	er 3.200 times faster than a	n unknown gas. What is
5. A tank containing both Cl_2 and SF_6 gase of Cl_2 to the rate of effusion of SF_6 is		o of the rate of effusion

6. A carbon dioxide molecule travels at 45.0 m/s at a certain temperature. At the same temperature, find the average speed of an oxygen molecule (O_2).		