Molecular Effusion and Diffusion

Advanced Chemistry

Effusion \& Diffusion

- The dependence of molecular speed on mass has two interesting consequences.
(1) Effusion: the escape of gas molecules through a tiny hole
- Light atoms or molecules escape through the hole faster than heavier ones
- Smaller atoms can fit through the hole better
- Faster atoms are more likely to hit the hole, and smaller atoms are faster at the same temp
(4) Diffusion: the spread of one substance throughout a space or throughout second substance
- Faster for light molecules than for heavier ones
- Slower than effusion due to the random motion of molecular collisions. There is no net direction of motion

Diffusion and Mean Free Path

- Due to molecular collisions, the direction of motion of a gas molecule is constantly changing.
- Mean Free Path: average distance traveled by a molecule between collisions
\rightarrow High pressure \rightarrow short mean free path Low pressure \rightarrow long mean free path

Graham's Law of Effusion

- Effusion rate of a gas is inversely proportional to the square root of its molar mass. Assume two gases are at same temperature and pressure with identical pinholes.
- Graham's Law:
$\Leftrightarrow \frac{r 1}{r 2}=\sqrt{\frac{\mu_{1}}{\mathcal{N}_{1}}}$
$r=$ rate of gus or speed or
* \mathscr{M} is in $\mathrm{g} / \mathrm{mol}$

7 diatomic: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}, \mathrm{B}$.
Applying Graham's Law
An unknown gas composed of homonuclear diatomic molecules effuses at a rate that is 0.355 times the rate at which \dot{O}_{2}^{2} gas effuses at the same temperature. Calculate the molar mass of the unknown and identify it.

$$
\begin{array}{r}
\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}} \\
\frac{.355^{2}}{1}=\sqrt{\frac{31.998}{x}}^{2} \\
\frac{.126025}{1}=\frac{31.998}{x}
\end{array} \quad \begin{aligned}
& \frac{31.998=.126025 x}{.126025} \\
& \begin{array}{l}
x=253.9020036 \\
\text { iodine } F_{2} \text { is ink emu } \\
\text { gus }
\end{array}
\end{aligned}
$$

$$
\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}
$$

More Practice
A sample of hydrogen effuses through a porous container about nine times faster than an un负hown gas. Calculate the molar mass of the unknown gas.

$$
\begin{aligned}
& \frac{9^{2}}{1}=\sqrt{\frac{x}{2.0158}}^{2} \\
& \frac{81}{1}=\frac{x}{2.0158}
\end{aligned}
$$

HOMEWORK

- A sample of oxygen gas $\left(\mathrm{O}_{2}\right)$ was found to effuse at a rate equal to two times that of an unknown gas. The molar mas of the unknown gas is \qquad g/mol.

More Practice

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{m_{2}}{\mu_{1}}}
$$

Calculate the ratio of the effusion rates of $\underline{\mathrm{N}_{2}}$ gas to the rate $\underline{\mathrm{O}}_{2}$ gas.

$$
\begin{aligned}
& \frac{N_{2}}{O_{2}}=\sqrt{\frac{31.998}{28.014}} \\
& x=1.068744407
\end{aligned}
$$

N_{2} effuses at a rate of 1.0687444107 times fast than O_{2}

HOMEWORK

- A tank containing both HF and HBr gases developed a leak. The ratio of the rate of effusion of HF to the rate of effusion of HBr is \qquad .

More Practice

- If a molecule of neon gas travels at an average speed of 400.0 m / s at a given temperature. Find the average speed of a molecule of butane gas, $\mathrm{C}_{4} \mathrm{H}_{10}$, at the same temperature.

$$
\frac{400}{x}=\sqrt{\frac{S 8.123}{20.179}}
$$

$$
\frac{1.697165485 x=400}{1.697}
$$

$$
\frac{400}{x}=\frac{1.697165485}{1}
$$

$$
\begin{gathered}
x=235.6870933 \\
x=235.7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

HOMEWORK

- If a molecule of CH_{4} gas travels at an average speed of $0.5300 \mathrm{~m} / \mathrm{s}$ at a given temperature. Find the average speed of a molecule of nitrogen gas, N_{2}, at the same temperature.

