Molecular Effusion and Diffusion

Advanced Chemistry

Effusion & Diffusion

- The dependence of molecular speed on mass has two interesting consequences.
 - 4 (1) Effusion: the escape of gas molecules through a tiny hole
 - Light atoms or molecules escape through the hole faster than heavier ones
 Smaller atoms can fit through the hole better
 - Faster atoms are more likely to <u>hit the hole</u>, and smaller atoms are faster at the same temp
 - (2) Diffusion: the spread of one substance throughout a space or throughout a second substance
 - Faster for light molecules than for heavier ones
 - Slower than effusion due to the random motion of molecular collisions. There is no net direction of motion

Diffusion and Mean Free Path

Due to molecular collisions, the direction of motion of a gas molecule is constantly changing.

Mean Free Path: average distance traveled by a molecule between collisions

High pressure \rightarrow short mean free path Low pressure \rightarrow long mean free path

Graham's Law of Effusion

- Effusion rate of a gas is inversely proportional to the square root of its molar mass. Assume two gases are at same temperature and pressure with identical pinholes.
- Graham's Law: $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$

* \mathcal{M} is in g/mol

(= rate of gus or speed or ratio of speed

Applying Graham's Law

An unknown gas composed of homonuclear diatomic molecules effuses at a rate that is 0.355 times the rate at which 0²/₂ gas effuses at the same temperature. Calculate the molar mass of the unknown and identify it.

SGME

7 dictimic: Hz, Oz, Nz, Fz, Clz, Brz, Iz

Hz, Oz, Nz, Fz, Brz, Iz, CIZ

More Practice

A sample of hydrogen effuses through a porous container about nine times faster than an unknown gas. Calculate the molar mass of the unknown gas.

HOMEWORK

A sample of oxygen gas (O₂) was found to effuse at a rate equal to two times that of an unknown gas. The molar mas of the unknown gas is ______ g/mol.

 \triangleright Calculate the ratio of the effusion rates of N₂ gas to the rate O_2 gas.

$$\frac{N_2}{D_2} = \frac{31.998}{28.014}$$

X= 1.068744407

Nz effuses at a rate of 1.068744407 times fuste Man Oz

HOMEWORK

A tank containing both HF and HBr gases developed a leak. The ratio of the rate of effusion of HF to the rate of effusion of HBr is _____.

More Practice

If a molecule of neon gas travels at an average speed of 400.0 m/s at a given temperature. Find the average speed of a molecule of butane gas, C_4H_{10} , at the same temperature. 1.69 71654K5 = 400

$$\frac{400}{X} = \sqrt{\frac{58.123}{20.179}}$$

1.697

 $\frac{400}{x} = 1.697165485$

X=235.6870933

X = 235. 7m/s

HOMEWORK

If a molecule of CH₄ gas travels at an average speed of 0.5300 m/s at a given temperature. Find the average speed of a molecule of nitrogen gas, N₂, at the same temperature.