\qquad PER: \qquad

More Practice Concentration vs Time/Half Life

Instructions: Complete the following problems. SHOW ALL WORK in the empty space below the questions.
Remembers the units. Round to the correct number of significant figures. Hint: Every problem will require you to use both the integrated rate law and half life equation.

Equations

First Order: $\ln [A]_{t}-\ln [A]_{0}=-k \dagger$
Second Order: $1 /[A]_{t}=k t+1 /[A]_{0}$
Zero Order: $[A]_{t}=-k t+[A]_{0}$

1st Order Half Life: $\mathbf{t}_{1 / 2}=\frac{\mathbf{0 . 6 9 3}}{\boldsymbol{k}}$
2nd Order Half Life: $\mathbf{t}_{1 / 2}=\frac{1}{k[A] o}$
Zero Order Half Life: $\boldsymbol{t}_{1 / 2}=\frac{[A] o}{2 k}$

Zero-Order Problems

1. The half-life of a zero order reaction is 94 seconds. If the initial concentration of the reactant is 0.225 M , what would the final concentration be after 13 seconds?
2. What is the half-life of a zero order reaction that initially starts with a concentration of 0.346 M if the concentration was found to be 0.257 M after 187.0 seconds?

First-Order Problems

3. The half-life of a first-order reaction is 13.0 min. If the initial concentration of reactant is 0.130 M , it takes \qquad min for it to decrease to 0.0850 M .
4. The following reaction is first order in $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]: 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}$ (g) A solution originally at $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ is found to be 0.075 M after 54 min . The half-life for this reaction is \qquad min.

Second-Order Problems

5. The half-life of a second-order reaction is 151 seconds. If the initial concentration of the reactant is 0.112 M , what would the final concentration be after 60.0 seconds?
6. What is the half-life of a second order reaction that initially starts with a concentration of 0.550 M if the concentration was found to be 0.450 M after 320.0 seconds?
