Gas Mixtures \& Partial Pressures

Advanced Chemistry

Introduction

- So far we have considered mainly pure gases - one substance in the gaseous state.
- How do we deal with mixtures of two or more different gases?
- John Dalton's Observation: The total pressure of a mixture of gases equals the sum of the pressures that each would exert if it were present alone.
Partial pressure: pressure exerted by a particular component of a mixture of gases

Dalton's Law of Partial Pressures

$$
P_{t}=\text { total }
$$

- Dalton's Law of Partial Pressures
$A P_{t}=P 1+P 2+$ P3 \ldots
- The equation implies each gas behaves independently of the others. Therefore, we can use the ideal gas law to determine the pressure of each gas involved.

$$
\mathrm{P} 1=\frac{n_{1} R T}{V}, \mathrm{P} 2=\frac{n_{2} R T}{V} \text {, and so forth. }
$$

Applying Dalton's Law of Partial
Pressures $\quad 6 \mathrm{~g} 02 \times \frac{1 \mathrm{~mol}}{31.98 \mathrm{~g}}=\quad 9 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{16.042 \log }=$

- A mixture of $6.00 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g})$ and $9.00 \mathrm{~g} \mathrm{CH}_{4}(\mathrm{~g})$ is placed in a 15.0 L vessel at $0^{\circ} \mathrm{C}$. What is the partial pressure of each gas, and what is the total pressure in the vessel?

More Practice

- What is the total pressure exerted by a mixture of 2.00 g of $\mathrm{H}_{2}(\mathrm{~g})$ and $8.00 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}(\mathrm{~g})$ at 273 K in a 10.0 L vessel?

Partial Pressures \& Mole Fractions

- Because each gas in a mixture behaves independently, we can relate the amount of a given gas in a mixture to its partial pressure.
$\frac{P_{1}}{P_{t}}=\frac{n_{1} R T / V}{n_{t} R T / V}=\frac{n_{1}}{n_{t}}$
- The ratio $\mathrm{n}_{1} / \mathrm{n}_{\mathrm{t}}$ is called the mole fraction of gas $1\left(\mathrm{X}_{1}\right)$
- Combining equations gives us:
$\mathrm{P}_{1}=\left(\frac{n_{1}}{n_{t}}\right) P t=\mathrm{X}_{1} \mathrm{P}_{\mathrm{t}}$
- The mole fraction can be represented as a percent
- Mole fraction of N_{2} in air is $0.78=78 \%$ of molecules in air are N_{2}

Relating Mole Fractions and Partial

$$
P_{1}=\left(\frac{n_{1}}{n_{t}}\right)(p t)
$$

Pressures 745 for $\times \frac{1 \text { atm }}{760 \text { atm }}=$

- A study of the effects of certain gases on plant growth requires a synthetic atmosphere composed on 1.50 mol percent $\mathrm{CO}_{2}, 18.00 \mathrm{~mol}$ percent O_{2}, and 80.5 mol percent Ar. Calculate the partial pressure of each gas in the mixture if the total pressure of the atmosphere is 745.0 torr.

$$
\begin{aligned}
& \mathrm{CO}_{2} \\
& X=\left(\frac{1.50}{100}\right)(.9802631579)=.0147 \mathrm{~atm} \mathrm{CO}_{2} \\
& \mathrm{O}_{2} \\
& X=\left(\frac{18}{100}\right)(.9802631579)=.1764 \mathrm{atmO} \mathrm{O}_{2}
\end{aligned}
$$

More Practice

- From data gathered by Voyager 1, scientists have estimated the composition of the atmosphere of Titan. The pressure on the surface is 1220.0 torr. The atmosphere consists of $82.0 \mathrm{~mol} \mathrm{~N}_{2}, 12.0 \mathrm{~mol} \mathrm{Ar}$, and 6.00 mole CH_{4}. Calculate the partial pressure of each gas.

More Practice

- A mixture of gases contains $0.75 \mathrm{~mol} \mathrm{~N} 2,0.30 \mathrm{~mol}$ 02 , and $0.15 \mathrm{~mol} \mathrm{CO2}$. If the total pressure of the mixture is 2.15 atm , what is the partial pressure of each compound?

