Real Gases: Deviations From Ideal Behavior

Advanced Chemistry

Introduction

- The extent to which a real gas departs from ideal behavior can be seen by rearranging the ideal-gas equation to solve for n.

$$
\frac{P V}{R T}=n
$$

- The equation tells us that for 1 mol of ideal gas, the quantity PV/RT equals 1 at all pressures.

Ideal-Gas Law Deviation

- At high pressures (above 10atm), the deviation from ideal behavior is large and different for each gas.
- At lower pressures (below 10atm), the deviation from ideal behavior is small.
- At high temperatures, the deviation is small
- At low temperatures, the deviation is large

The behavior of real gases only conforms to the ideal-gas equation at relatively high temperatures and low pressure.

Even the same gas will show wildly different behavior under high pressure at different temperatures.

Knowledge Check

-Under which conditions do you expect helium gas to deviate most from ideal behavior?
-100 K and 1 atm
-100 K and 5 atm

- 300 K and 2 atm

Deviations from Ideal Behavior

Low pressure

High pressure

Ideal gas

Real gas

The assumptions made in the kinetic-molecular model (negligible volume of gas molecules themselves, no attractive forces between gas molecules, etc.) break down at high pressure and/or low temperature.

Corrections for Nonideal Behavior

- The ideal-gas equation can be adjusted to take these deviations from ideal behavior into account.
- The corrected ideal-gas equation is known as van der Waals equation.

$$
\left(\mathrm{P}+\frac{n^{2} a}{V^{2}}\right)(v-n b)=n R T
$$

Van der Waals

- $\left(\mathrm{P}+\frac{n^{2} a}{V^{2}}\right)(v-n b)=n R T$

D $\mathrm{a}=\mathrm{a}$ measure of how strongly the gas molecules attract one another
b $=$ measure of the finite volume occupied by the molecules

- a and b are constants determined through experiments.
- $\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$

TABLE 10.3	Van der Waals Constants for Gas Molecules	
Substance	$\boldsymbol{a}\left(\mathbf{L}^{2}\right.$-atm $\left./ \mathbf{m o l}^{2}\right)$	$\boldsymbol{b}(\mathbf{L} / \mathbf{m o l})$
He	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0510
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305
CH_{4}	2.25	0.0428
CO_{2}	3.59	0.0427
CCl_{4}	20.4	0.1383

Using Van der Waals Equation

- Use the Van der Waals equation to estimate the pressure exerted by 1.00 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ in 22.41 L at 273.15 K

Comparing Van der Waals to Ideal Gas

 Law- Use ideal gas equation to determine the pressure exerted by 1.00 mol of $\mathrm{Cl}_{2}(\mathrm{~g})$ in 22.41 L at 273.15 K

HOMEWORK

- A sample of 1.00 mol of $\mathrm{CO}_{2}(\mathrm{~g})$ is confined to a 3.00 L container at 273.15 K . Calculate the pressure of the gas
- (a) the ideal gas law

HOMEWORK

- A sample of 1.00 mol of $\mathrm{CO}_{2}(\mathrm{~g})$ is confined to a 3.00 L container at 273.15 K . Calculate the pressure of the gas
- (b) the van der Waals equation

More Practice

- Using the van der Waals equation, the pressure in a 22.41 L vessel containing 1.00 mol of neon gas at $100.0^{\circ} \mathrm{C}$ is
\ldots atm. $(a=0.211 \mathrm{~L} 2-\mathrm{atm} / \mathrm{mol} 2, b=0.0171 \mathrm{~L} / \mathrm{mol})$

HOMEWORK

- Using the van der Waals equation, the pressure in a 22.41 L vessel containing 1.50 mol of xenon gas at $100.0^{\circ} \mathrm{C}$ is
\ldots atm. $(a=4.19 \mathrm{~L} 2-\mathrm{atm} / \mathrm{mol} 2, b=0.0510 \mathrm{~L} / \mathrm{mol})$

