Real Gases: Deviations From Ideal Behavior

Advanced Chemistry

Introduction

The extent to which a real gas departs from ideal behavior can be seen by rearranging the ideal-gas equation to solve for n.

$$\frac{PV}{RT} = n$$

The equation tells us that for 1 mol of ideal gas, the quantity PV/RT equals 1 at all pressures.

Ideal-Gas Law Deviation

- At high pressures (above 10atm), the deviation from ideal behavior is large and different for each gas.
- At lower pressures (below 10atm), the deviation from ideal behavior is small.
- At high temperatures, the deviation is small
- > At low temperatures, the deviation is large

The behavior of real gases only conforms to the ideal-gas equation at relatively high temperatures and low pressure.

© 2012 Pearson Education, Inc

Even the same gas will show wildly different behavior under high pressure at different temperatures.

Knowledge Check

Under which conditions do you expect helium gas to deviate most from ideal behavior?

- ▶100 K and 1 atm
- ▶100 K and 5 atm
- ▶300 K and 2 atm

Deviations from Ideal Behavior

The assumptions made in the kinetic-molecular model (negligible volume of gas molecules themselves, no attractive forces between gas molecules, etc.) break down at high pressure and/or low temperature.

Corrections for Nonideal Behavior

The ideal-gas equation can be adjusted to take these deviations from ideal behavior into account.

The corrected ideal-gas equation is known as van der Waals equation.

$$(\mathsf{P} + \frac{n^2 a}{V^2})(v - nb) = nRT$$

Van der Waals

$$\triangleright (\mathsf{P} + \frac{n^2 a}{V^2})(v - nb) = nRT$$

a = a measure of how strongly the gas molecules attract one another

- b = measure of the finite volume occupied by the molecules
- a and b are constants determined through experiments.
- R = 0.08206 L-atm/mol-K

TABLE 10.3 • Van der Waals Constants for Gas Molecules		
Substance	$a(L^2-atm/mol^2)$	b (L/mol)
Не	0.0341	0.02370
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0510
H ₂	0.244	0.0266
N ₂	1.39	0.0391
O ₂	1.36	0.0318
Cl_2	6.49	0.0562
H ₂ O	5.46	0.0305
CH_4	2.25	0.0428
CO ₂	3.59	0.0427
CCl_4	20.4	0.1383

© 2012 Pearson Education, Inc.

Using Van der Waals Equation

Use the Van der Waals equation to estimate the pressure exerted by 1.00 mol of Cl₂(g) in 22.41 L at 273.15 K

Comparing Van der Waals to Ideal Gas Law

Use ideal gas equation to determine the pressure exerted by 1.00 mol of Cl₂(g) in 22.41 L at 273.15 K

HOMEWORK

- A sample of 1.00 mol of CO₂(g) is confined to a 3.00 L container at 273.15 K. Calculate the pressure of the gas
 - ► (a) the ideal gas law

HOMEWORK

A sample of 1.00 mol of CO₂(g) is confined to a 3.00 L container at 273.15 K. Calculate the pressure of the gas

(b) the van der Waals equation

More Practice

Using the van der Waals equation, the pressure in a 22.41 L vessel containing 1.00 mol of neon gas at 100.0°C is atm. (a = 0.211 L2-atm/mol2, b = 0.0171 L/mol)

HOMEWORK

Using the van der Waals equation, the pressure in a 22.41 L vessel containing 1.50 mol of xenon gas at 100.0°C is atm. (a = 4.19 L2-atm/mol2, b = 0.0510 L/mol)