\qquad
\qquad

Weight Problems WS

Instructions: Complete the following problems using the equation below. SHOW ALL WORK. No work = no credit. Do not forget your units.

$$
\begin{aligned}
& \text { Weight Formula } \\
& \qquad \text { Weight }=\text { Mass } \times \text { Acceleration due to gravity } \\
& \qquad W=m g
\end{aligned}
$$

1. On Earth, g is always equal to \qquad -
2. A locomotives mas is 18181.81 kg . What is its weight?
$\mathrm{W}=$ \qquad
$g=$ \qquad
$\mathrm{m}=$ \qquad
3. A small car weighs 10168.25 N . What is its mass?
$W=$ \qquad
$g=$ \qquad
$\mathrm{m}=$ \qquad
4. What is the weight of an infant whose mass is 1.76 kg ?
$W=$ \qquad
$g=$ \qquad
$m=$ \qquad
5. An F-14's mass if $29,545 \mathrm{~kg}$. What is its weight?
$W=$ \qquad
$g=$ \qquad
$m=$ \qquad
6. What is the mass of a runner whose weight is 648 N ?
$\mathrm{W}=$ \qquad
g= \qquad
$m=$ \qquad

Instructions: Solve the following problems using the table to the right for the correct values of g. (Use values $\mathrm{m} / \mathrm{s}^{2}$)
7. A locomotives mas is 18181.81 kg . What is its weight on the moon? $\mathrm{W}=$ \qquad
g= \qquad
$\mathrm{m}=$ \qquad
8. A small car weighs 10168.25 N . What is its mass on Mars?
$\mathrm{W}=$ \qquad
$g=$ \qquad
$m=$ \qquad
9. What is the weight of an infant on Venus whose mass is 1.76 kg ?
$\mathrm{W}=$ \qquad
$g=$ \qquad
$\mathrm{m}=$ \qquad
10. An F-14's mass if $29,545 \mathrm{~kg}$. What is its weight on Jupiter?
$W=$ \qquad
$g=$ \qquad
$m=$ \qquad
11. What is the mass of a runner on the sun whose weight is 648 N ?
$\mathrm{W}=$ \qquad
g= \qquad
$\mathrm{m}=$ \qquad

OBJECT	ACCELER.ATION DUE TO GRAVITY	CRAVITY
Earth	$9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $32 \mathrm{ft} / \mathrm{s}^{2}$	1 G
the Moon	$1.6 \mathrm{~m} / \mathrm{s}^{2}$ or $5.3 \mathrm{ft} \mathrm{s}^{2}$.16 G
Mars	$3.7 \mathrm{~m} / \mathrm{s}^{2}$ or $12.2 \mathrm{ft} / \mathrm{s}^{2}$.38 G
Venus	$9.5 \mathrm{~m} / \mathrm{s}^{2}$ or $31 \mathrm{ft} / \mathrm{s}^{2}$.88 G
Jupiter	$24.5 \mathrm{~m} / \mathrm{s}^{2}$ or $80 \mathrm{ft} / \mathrm{s}^{2}$	2.54
the Sun	$275 \mathrm{~m} / \mathrm{s}^{2}$ or $896 \mathrm{ft} / \mathrm{s}^{2}$	28 G

